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1. Executive Summary

This final report describes"-tyt research on real-time speech recognition. . fave
developed, under other DARPA-funded contracts, a system for continuous speech recognition.
BYBLOS, the BBN Continuous Speech Recognition System, consists of a general paradigm and
several algorithms for high performance speech recognition. The goals of the real-time project

have been:

1", Develop algorithms and hardware for near-real time speech recognitions' "

24 Develop and assess techniques for using highly parallel machines for continuous
speech recognition. ,' ,

The focus of our work has been on parallel processing techniques for speech recognition.
As such, most of our work has involved implementing different speech recognition algorithms
on the ButterflyTM Parallel Processor ("Buttertlv"). Several demonstrations of different aspects
of speech recognition were given using the Butterfly implementation. In addition. during the
past year. we have devoted most of our effort under this contract supporting the joint project
between SRI, UC Berkeley, and BBN to develop a set of special purpose speech recognition

boards for real-time continuous speech recognition.

In the first year of the project (1985), we implemented an initial version of continuous
speech recognition on a 16-processor Butterfly Parallel Processor. We used the Uniform System
programming paradigm to allocate memory and computation among the different processors.
After some revisions, the system was found to obtain 75% efficiency on 16 processors. which
amounts to a speed up of a factor of 12 over the speed of a single processor.

In the second year we concentrated on improving the efficiency when a much larger
number of processors was used. We used a Butterfly Parallel Processor with 97 processors.
When the same code was used as on 16 processors, we found a speed up of a factor of 20. which
was fast, but represented only 20% efficiency. We identified several issues of scheduling and
memory contention that had not been significant on a smaller machine, but which began to
dominate as we used larger configurations. After these issues were solved, we achieved a 79,-'
efficiency, which amounts to an increase in speed by a factor of 77.

The work described above involved continuous speech recognition with no granmatical
constraints. In the third year we implemented several different types of grammar-directed
recognition algorithms on the parallel machine. These included bigram statistical grammars.
deterministic finite-state automata (DFA) which are basic network ramnmars. nondeteiministic
finite-state automata iNFA). which are NiMilar. but all )w "null" arcs in the Lranmar. and the
Word-Pair erammar. which is a special case of an NFA with a large number of null arcs. The
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special problems associated with using medium and larger grammars to constrain the sequence
of words were solved. In addition, during the third year of the project. we implemented and gave
several demonstrations of speech recognition using different types grammars.

Having demonstrated the feasibility of speech recognition using a highly parallel machine,
we turned our attention to providing real-time speech recognition in a smaller, possibly portable
device. After considering several commercially available boards, we decided to cooperate with
SRI and UC Berkeley to help them build a set of special-purpose boards that would support
-,peech recognition in real time. We consulted with them concerning the details of our
recognition algorithm, and together with them determined an overall architecture that was both
feasible and would accomplish the recognition task efficiently. We also helped by designing a
small number of the VLSI cells for the special-purpose chips. Finally, we specified the hardware
requirements for the front end signal processing board and wrote and tested all of the signai
processing software for the TMS320C25 in assembly language.

Details of the work are given in the body of the report that follows.
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2. Speech Recognition on the Butterfly Parallel Processor

We have developed, under other DARPA-funded contracts, a system for continuous speech
recognition. BYBLOS, the BBN Continuous Speech Recognition System. consists of a general
paradigm and several algorithms for high performance speech recognition. Our primary focus
durin, this contract has been to demonstrate the effectiveness of using large-scale parallelism for
near real-time continuous speech recognition. We started with the BYBLOS system for
continuous speech recognition, which was being developed under other DARPA-funded
contracts. The algorithm had inherent parallelism which we felt could be exploited on a parallel
processor. This work was performned using the ButterlyTM Parallel Processor (which will be
referred to as "Butterfly" during the remainder of this text) because it was one of the few readily
available and extensible general purpose parallel processors at the time. In this chapter we
describe each of the algorithms inplemented on the Butterfly.

In Section 1 we give a brief description of the Butterfly hardware and the Uniform System
paradigm that we use to program it. Our first attempt at using a 16-processor configuration for
continuous speech recognition with no grammar is outlined in Section 2. When we increased the
size of the configuration to 97 processors we found (as expected) that the speed increased only a
small amount. We were able to determine the causes of inefficiency in our use of large-scale
parallelism, and by making several small modifications we restored the efficiency. These
experiments are described in Section 3. In Section 4 we explain the special problems associated
with using each of several different types of grarrunars to constrain the sequence of words
recognized.

2.1 The Butterfly Parallel Processor

Hardwrare

The Butterfly Parallel Processor [II is composed of multiple (up to 256) identical node,
interconnected by a high-performance switch. Each node contains a processor and memorx. The
switch allows each processor to access the memory on all other nodes. Collectively. thee
memories form the shared memory of the machine, a single address space accessible to evei-,
processor. All interprocessor communication is performed using shared memory. Typically
memory referencing instructions accessing remote memory take about three times as long a.

references to local memory'.

3
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The Butterfly Parallel Processor is a multiple instruction multiple data stream (MIMD)
machine in which each processor node executes its own sequence of instructions, referencing
data as specified by the instructions. Processor Nodes are tightly coupled by the Butterfly
switch. Tight coupling permits efficient interprocessor communication and allows each
processor to access all system memory efficiently. The Butterfly Parallel Processor is
expandable to 256 Processor Nodes. Each Processor Node contains a Motorola MC68000
family microprocessor, an optional floating-point coprocessor, from I to 4 MBytes of main
memory, a co-processor called the Processor Node Controller. memory management hardware.
an 1-0 bus, and an interface to the Butterfly switch. The particular machine that was used for
development in this project was a 16 processor machine with 1 Mbyte of memory on each
Processor Node. It did not have hardware support for floating point arithmetic.

Lniform S3slem

We used the Uniform System approach to obtain a parallel implementation. The Uniform
SNstem is a programming methodology supported by a library of high-level functions [31. It

exploits the uniform environment provided by the architecture of the Butterfly Parallel ProcesNor
to simplify the problem of load balancing for the memory as well as for the processors. Memory
accesses must be organized to avoid memory contention. The load on the processors is balanced
when all processors are equally busy and no processor is waitinig for another to finish.

Balancing the load on memory is accomplished by spreading out the data evenly across the

different physical memories in the machine, under the assumption that this will also spread the
accesses fairly evenly, reducing the inefficiency that results when many processors attempt to
access the same memory simultaneously. Functions for allocating storage in the shared memory
are included in the Uniform System, as are functions that perform block transfers between shared
memory and local memory.

The philosophy behind the Uniform System processor management methodology views the
processors as a uniform pool of workers, all of which know how to execute the same tasks.
Using this methodology, the programmer is only required to supply code that operates correctly
when multiple processors execute it at the same time. The processor management is

accomplished by first copying the program to each of the processors. In most cases. the program
will begin with a section of serial code that is executed on a single processor. To begin

executing a section of code on multiple processorrs -- a FOR loop, for example -- the programmer

can use a "task generator" to replace the FOR ,tatement and a "worker routine" to replace the

body of the FOR loop. The task generator makes a task descriptor available to all processors,
which use it. as they become free, to generate calls to the worker routine. Processors. using this

descriptor, execute the routine repeatedly for different index values, until the index has run its
range. When all processors have finished, the programn. once again serial, continues executing

on a single processor.

4
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We decided to use the Uniform Svstem for several reasons. First, the speech recognition

algorithm is essentially a sinle task, executed many times. This fits the Uniform System

paradigm very well. Second, being novices, we were attracted by the simplicity of use of the
Uniform System. Third, functions in the Uniform System allow automatic timing of the same

program run on various numbers of processors, and this provided an easy way of evaluating the
performance of the parallel implementation. Finally, because the same program can be run on
one or many processors, we believed that debugging the parallel implementation would be

simplified.

2.2 Initial Parallel Implementation

In this section we review the algorithm for continuous speech recognition. Then we explain

how this algorithm can be mapped onto the Butterfly parallel processor using the Uniform

System.

2.2.1 Speech Recotgnition Algorithm

To recognize speech we model it using a statistical approach. We treat the sequence of
short term spectra as if they were the output of a hidden Markov model (HMNI,. The forvard-
backward algorithm can be used to estimate the parameters ofthe models that best describe a set

of training data. Then. given an unknown sentence we use the Viterbi algorithm to determine the
sequence of states of the HNMM most likely to have produced the sequence of short term spectra

in the unknown utterance.

The basic recognition algorithm finds the path through the states that is most likely to ha% e
produced the spectral sequence to be recognized. The algorithm ldoes this b, finding the best

path to every state at every time given that the path to the previous state was also "best". Each
step along these paths has associated with it a "score", which reflects the probability of the step
given the spectral sequence and the transition probabilities of the model. The scores are

accumulated along the paths. so that, at even time, the best path to any state has a single score.

The best path to a particu'ar state. S. at time t. Is determined by considering ad pos."tble
predecessor states (states which have transitions to S) at time t-I and the best path to each of
these. The score for a path to S is then the combination of the path score to the best predecessor

state and the score for the step from that predecessor state to S.

The central computation in the algorithm is: for each time interval. update the scores for all
states. Figure 1 schematically illustrates the scoring procedure for a single state in a word. In
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this figure. the score for state n at time t (the un(t) in the lower right comer, is being computed
based on the scores for three states computed at time t-I (the three circles cti the left of the
figure) each multiplied by the corresponding transition probability of going to staie n. The new
score for state n is just the maximum of the entering scores multiplied by the probability of the
input spectrum at time t, given that the state is state n.

This scoring procedure is applied to all states in each word for all time frames in the
utterance. The scores computed for terninal states (ends of words) are special. The score and
start time of the word with maximum terminal score are saved. The largest terminal score for a
time frame is used as the score for all word-initial states in the next time frame. In addition, the
current state scorean(t) is compared against the largest state score, "Best(t), encountered so far
for the current time frame, and replaces it. if appropriate. This is used to derive a normalization
factor (NF = l/O Be(t), which is used to prevent arithmetic underflo,.

When all the time frames in the utterance have been processed in this way. the be,,t
sequence of words is determined. The maximum terminal score at the end of the utterance
specifies the last word of the utterance. The start time of this last word is the end time for the

previous word, so we can determine the second-to-last word in the theory, and so on. back to the
beginning of the utterance.

2.!.2 Parallel (mplementalion

High speed computations require that no disk is used. Therefore all the necessary memory
of the models of the words is distributed among the memory of all the processors.

1 he basic parallel task was defined to be the updating of the scores for all the states of one
word. The pertinent portion of the speech recognition progran can be abstracted as follows:

a) FOR all frames

b) initialize frame

C) FOR all words

d) initialize word

e) FOR all states

f) compute state score

g) IF (new max score)

6
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aX (t) = State Score at time t
" Multiply spectral probability by

sum of transition scores
o Keep track of best score

a~ 5t-t

P(Sn S- 2 )

MAX

PCXn I Sn 
P

Fii~ure 1: Score Computation for One State
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h) replace max score

i) IF (new max terminal)

j) replace max terminal

k) determine normalization

1) FOR all words

m) get terminal score

n) determine theory

The first parallel version combined lines d) through f) and parts of g) and hi into a single
task and used the generator GenOnLndex. which includes a prologue task and an epilogue task in
addition to the main task. The prologue task is executed only once by each processor before that
processor executes the main task for the first time. In this version, the prologue included line hi.
Similarly, the epilogue task is executed once by each processor after all main tasks haxe been
completed Hy that processor. For this program, the central task determined the maxunum ,tate
score and the maximum terminal score seen by each processor. The epilogue task compareo
these local maxima against global maxima, replacing the global maxima if necessary. The

remainder of the program (lines k-m). including the second FOR loop was executed sequentially.
on a single processor. Approximately 9 seconds was spent in the sequential portion of the
program when it was run for a 3.5 second utterance. When run on 15 processors, this resulted in
less than 50% utilization of the processors.

The next step was to attempt to reduce the sequential portion of the program. We noticed
that the second FOR loop (lines I and m), which propagates the best word's score in the current
frame to word-initial states for the next frame, could be incorporated into the first FOR loop.

effectively changing the program to:

FOR all frames

initialize frame

FOR all words

get previous frame terminal score

initialize word

FOR all states

!8
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compute state score

IF (new max score)

replace max score

IF (new max terminal)

replace terminal

determine normalization

3determine utterance.

This revision substantially reduced the time spent executing serial code. For 15 processors.

the execution time dropped from 15 seconds to 11 seconds for a 3.5 second utterance, and the
effective number of processors rose from 6.9 to 11.2. or approximately 75% utilization.

2.3 Large-Scale Parallelism

In this section, we describe the work needed to make the recognition algorithm efficient on

a larger scale parallel processor. While the initial algorithm was 75% efficient on a 16-processor
machine, the efficiency dropped to 20% when a 97-processor machine was used. Although this

represents a factor of 20 speedup of the program, it is an inefficient use of the machine. This

section presents several factors that contributed to the inefficiency as well as the methods used to

improve them.

As Amdahl's law states. when the number of processors becomes large, any serial

computation in the algorithm will quickly dominate the computation time, thus reducing

efficiency. We identified a number of problems:

" too few tasks for each processor

* scheduling overhead was too larme

* uneven length tasks caused some processors to he idle while waiting for frane
synchronization

j computation of the maximum score was a serial process.

As described in the rest of this section. we found solutions to these problems, Briefly. they were:

9 Attack problems of sufficient size for a parallel processor.

9
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" Use a more efficient scheduling algorithm.

" Perform tasks in decreasing order of length to decrease the amount of time spent
waiting for synchronization. In addition, the algorithm was changed so that some
work from the next frame could be performed before synchronization, thus keeping
processors busy when they had finished the work on the queue for the frame.

* Implement an algorithm that performed the maximum in logarithmic time.

With these changes, the efficiency improved from 75% to 95% on a 16-processor machine and

from 20% to 79% on a 97-processor machine.

There are a number of potential obstacles to attaining efficient processor utilization on a

multiprocessor. Typical issues include contention for a common memory location, serial code in

the program, and processors waiting idly to synchronize with other processors. Each of the

specific problems described below includes one or more of these issues.

Number of Tasks and Startup OMerhead

Even before the program was run on a larger machine, we had anticipated that it would be

hard to obtain high processor utilization with a vocabulary as small as 12(0 words. Since our

long-term goal is to recognize speech from large vocabularies, we switched to a larger task of

335 words. This change improved processor utilization to 35c on the 97-processor machine.

The speed of processor scheduling was examined next. In the initial parallel version shown

above, the generator subroutine call starts all the processors at each frame. It was found that the

overhead of starting up was relatively large for the amount of work being done at each frame.

To reduce the overhead, the program was altered to start all processors only once at utterance

start, generating VfiarnesxNVords tasks at that point and letting each processor determine its

word and frame indices from the single task index it receives from the generator. Processor

utilization improved to about 50% with this change.

In changing the program to start processors only at the beginning of an utterance, we had

implemented an explicit synchronization to replace the implicit one provided by starting up a

new generator at each frame. We subsequently made two more changes to synchronization to

improve efficiency.

Processor S.%nchronizalion Issuts

The task generation change had removed the Nvnchronlzation provided by starting up a new

generator at each frame. To replace this. an explicit synchronization was built into the program

to be performed after all the words in a trane were processed. There were two subsequent

10
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changes to improve the efficiency of synchronization. The first dealt with task ordering. In the

early versions of the algorithm, processors updated all the words in the vocabulary, with no
particular ordering of the words. Since words have varying numbers of phonemes (from one to

14 phonemes in this task's vocabulary), different words took different amounts of time to update.

If a processor began work on a long word near the end of the work for a frame, other processors
would finish their assigned words and wait idly to synchronize with the one busy processor. To

reduce this inefficiency, the w dis were processed in order from longest to shortest (in number

of phonemes).

In figure 2, we schematically depict the situation before and after the words are ordered.

The filled rectangles represent time when processors actively work on tasks and the white space

represents time between tasks when no work is being accomplished. In the right hand part of the
figure, idle processor time is substantially reduced by sorting.

The second change to synchronization efficiency concerned the point in the program at
which synchronization was done. As mentioned, the purpose of the synchronization was to

ensure that no processor proceeded to the next frame until the starting score for words and the
normalization factor were computed. Since the normalization factor was only to avoid score

underflow, it could be estimated a frame or more earlier. The only remaining synchronization

constraint was the word-starting score. This score, however, is used only at the beginning of the

first phoneme of each word. Considering this, the order of the update of a word was reversed so

that the last phoneme was updated first, and the first phoneme updated last. This change allowed
a processor to finish work on one frame and immediately begin work on updating a word from

the next frame, synchronizing only when it got to the first phoneme. In this way, time that had

been previously spent by processors waiting for others to finish a frame was now being used to
perform useful work from the next frame.

Figure 3 depicts the situation for two frames of an utterance before and after this change.
Tasks for time T+1 are shown in two shades. The darker portion represents the part of the task

that depends on the previous frame's work being finished. On the right, with the order of the
computation reversed, the idle processor time is reduced. The effect of the synchronization

changes was to increase processor utilization to approximately 72%I.

Finding Glohal \axirnum

Finally. the efficiency of finding the maximum value was also improved. A straightforward
computation of the maximum value requires that all values be compared with a single memory

location, but this approach results in contention for that location. As a first improvement, the

program was altered to make each processor maintain its own local maximum of the scores of all

the words that it updates in a frame. At the end of the frane, the global maxinum of these

I1
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Figure 2: Ordering Tasks by Length to Achieve Load Balancingy
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I Figture 3: Reversing Word Computation Order to Reduce Synchronization Waiting
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values over all processors was determined. In initial versions, this was accomplished by having

processors sequentially compare their value to the global location and replace it if necessary. In

taking the global maximum, each processor's operations must be done indivisibly, since

processors could otherwise interleave operations and get inconsistent results. In early versions

of the program, this was accomplished, by using "locks" and having processors sequentially

compare their local maximum to a global location. Although on a sixteen processor machine, the

time for processors to turn in values in this way is negligible. with 97 processors. the inefficiency

of the approach becomes noticeable.

An alternative to this approach was to set up a "binary tree" of locations for taking the

maximum. In this approach, the processors' local maxima are the leaves of the tree and the

maxima are propagated up through the nodes of the tree. This approach reduces the asymptotic

time for finding a global maximum from O(N) to Olog N), where N is the number of processors.

More importantly in our case, efficiency improved because memory contention was reduced.

The inefficiency might be reduced further by increasing the branching factor of the tree fe.g.

having four processors turn in their local maxima to a location instead of two). However, since

the loss was determined to be small, this approach was not pursued further.

The total effect of all the improvements described above was to improve processor

utilization on a 97-processor machine from 20% to 79%. Figure 4 is a graph of processor

utilization for I to 97 processors on the 335 word task. The actual speed of the speech

recognition improved accordingly. After the optimizations are included, a one-processor

Butterfly Parallel Processor requires 128 times real time (128 seconds to process one second of

input speech) and a 97-processor machine requires about 1.7 times real time. It should be noted

that these times are for Butterfly Parallel Processors that use MC68000 microprocessors. When

we used the later version of the Butterfly that used the MC68020 based machine, the machine

sped up by about 60% to achieve real time.

2.4 Speech Recognition iith a Grammar

Speech recognition with a grammar presents special problems for a parallel

implementation. In the no grammar case, the parallelism is very regular: there is a fixed number

of words whose scores are updated in parallel, with a single global maximum at the end of each

frame. With a grammar. there are several sets of words, with each set comin2 into a different

node in the grammar. Each of these sets of words must be handled independently, making the

parallel algorithm much more complex. Typically only a small percentage of the possible words

in the grammar score well enough to be updated. Therefore. the scheduling algorithm must use a

dynamically changing list of words to update rather than just updating all words. Furthermore.

14
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the amount of work varies significantly from frame to frame. As a result, in frames with very

little work to do. some processors will not have enough work for efficient parallel utilization.

Below we discuss the algorithms implemented to recognize speech using different grammars and

to deal with these special problems.

Pruning

One issue for grammar recognition is that only a small percentage of words actually score

well enough to be worth updating. In a serial machine, a simple pruning algorithm can he used

to avoid some computations. For the case of no grammar, pruning within the word typically

saves a factor of two in computation. However, for a parallel machine, reducing the work in this

way may reduce efficiency. Before any grammar recognition algorithms were developed, we

implemented within-word pruning. We found that this algorithm saved the same factor of two as

the serial implementation, even though the tasks were now shorter and more varied in length.

With this change, the system could perfonn recognition with a vocabulary of 350 words in 1.2

times real time on a 64-processor machine. That is. each second of input speech required 1.2

seconds of computation time.

Bigram Grammar

The first type of grammar that we implemented was a statistical bigram grammar. This
grammar has a probability for each pair of words in the vocabulary. That is. given a preceding
word, there is a different probability for each following word. This type of grammar can provide

good recognition accuracy with a relatively simple algorithm. In the initial implementation of

this grammar, word-ending scores that were sufficiently high were propagated forward to all

possible words that could follow. This approach had the drawback that it required using memory

locks to guarantee that the maximum was computed correctly. An alternative method was to

maintain a list of good ending words and have each new word look back at this list to determine

its starting score. This approach did not require locks and therefore reduced senal contention.

The recognition speed was similar to that for no granmmar: ii was 6 times real time on a 16-

processor machine.

10WO Wdord Vocahulary

At this time we changed task domains to the 1000-word DARP- resource 1magnement

task. The increased vocabulary size required increased memory in the decoder. At this point.
the Butterfly had a 16 MB virtual address limit. We compressed the decoder', data structure, in

order to fit them in the limited space. From this point on. all work used this task domain.

I)FA Grammars
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The second type of grammar that we implemented was a Deterministic Finite Automaton

(DFA). This grammar is a directed network of nodes and labeled arcs specifying all possible

word sequences. At any node of the DFA grammar, the exiting arcs of the grammar contain at

most one instance of each word. This type of grammar is useful for specifying smal but useful

languages.

The first major change to the algorithm was that we implemented a new scheduler that

maintains a list of the gramrnmar-word-arcs that are worth updating. This list was implemented

as a first-in first-out queue, where new tasks were added to the tail of the queue and processor

took their tasks from the head of the queue.

To decode a sentence, the processors updating the word-arcs deposit information (ending

score, maximum score, tracehack) into the arc's destination node. Whichever processor updates

the last arc into a node is also responsible for doing "node work". This entails propagating the

best ending score into all legal following words, specified by the exiting arcs from that node. It

also will schedule tasks for each of these words that are not already on the queue for the next

frame. Finally, the maximum score from all the words' arcs entering the node is deposited into a

global array. Similarly. the processor that does the node work for the last node is responsible for

doing the "frame work". That is. it finds the maximum of the scores in the global array,

computes the normalization factor and pruning threshold for the next frame, and starts the

processing for the next frame. At this point any processors that have been waiting for the current

frame to end can proceed to the next frame. After the work for the last frame is completed, one

processor traces back to find the best scoring sequence of words for the utterance. This

traceback is done by a single processor, but is computationally insignificant enough that it was

not worth parallelizing.

NFA Grammars

The n,-xt type of grammar that we implemented was a Non-deterministic Finite Automaton

(NFA). This is a more general type of finite automaton in that non-unique exiting arcs are

allowed from a single node. In addition. it allows a special type of arc called null-arcs. Null-

arc, allow transitions from one node to another with no words between them. This makes it easy

to represent the possibility of skipping a word or several words.

The advantage of NFAs is that they can represent the sane languages as DFAs in a more

compact form. In addition, they often require less computation in recognition. These advantages

make it practical to use more complex language models, such as the ones described helow.

However, NFAs are more difficult to implement than DFAs since null-arcs introduce an

additional part of the computation that must he done after the word updates are finished in a

frame. Efficient algorithms for propagating scores through null-arcs in parallel require some

overhead to avoid processor contention. In addition. the null-arc score propagation involves

different null-arcs at each frame and it can be scheduled only after the s ord updates are done.

1



Report No. 7034 BBN Systems and Technologies CorporationU
3 We completed initial work on NFAs and implemented the system with a number of

different grammars. One of these grammars was used in the Speech and Natural Language
Project's initial "serial demonstration" described below. Using this grammar, the system

recognized utterances in approximately 3-5 times real time.

3 Word-Pair Grammar

For our live test on September 29th and for the demonstration on October 13th. we wanted

Sto use a grammar with large perplexity that also covered all of the sentences in the database. A
simple grammar that met both of these goals is the Word-Pair (WP) Grammar. This grammar

allows all of the pairs of words that are allowed by the set of sentence patterns that define the

DARPA Resource Management Task Domain Database. On the average, for each of the 1000
words there are about 60 words that can follow. i.e.. the grammar perplexity is 60.

I The WP Grammar can be Implemented as an NFA that has 1000 arcs for the 1000 words in

the vocabulary, and null-arcs connecting all allowable pairs of words. Thus, this gramnar has a3 very high percentage of null-arcs compared to many other grammars. Using thImplementation

described above for NFAs, the time required for this grammar wvas ahout 0-8(1 times real time
on 16 processors. To avoid duplication of work. the initial implementation required that each

word that was scheduled to be updated notify all nodes that could be reached directly or through
null-arcs by that word. For the WP Grammar. this notification was very expensixe because ot

the large number of null-arcs. In fact very few w*ords end with good scores. Therefore. we were

able to remove the notification step by adding a tlag so that only the first word to propagate to a
node would schedule following word tasks. This new algorithm reduceo the computation to3 10-15 times real time with an efficiency of 47c ,.

At this time we still felt that the recognition should run about twice as fast a, it W*'

running. We used a new profiling tool that allowed us to monitor the different tasks In the

parallel processor. This tool showed clearly that, in each frame, all processors worked on each
of the words to he updated. and then a few processors propagated the node scores through the

null-arcs to the possible following words. (The WP grammar is somewhat different from other
grammars in that it has a very high ratio of null-arcs to word arcs.) We modified the algorithm
so that rather than requiring the last processor into a node to propagate scores from that node.
these tasks were put on a second queue. This second queue of tasks was executed in parallel

when all of the first queue w*as completed. Thus, work that was executed in serial was no\\
being executed in parallel. The efficiency improved to 6X%, and the speed improved to 6-8
tines real time or 10-30 seconds for average-length utterances.

N Overall Strateg,

In all of the code implemented on the Butterfly. we tred to avoid locking memory where
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possible. Instead, we used atomic operations to increment and decrement counters to assure

orderly updating of values. When necessary, we used even/odd registers or last-frame/current-

frame/next-frame registers to avoid confusion between different frames. This was necessary

because we allowed the Butterfly to be working on two frames at one time. While we were able

to increase the parallel efficiency by working on two frames at a time. it did complicate the

algorithm considerably, especially in combination with grammars and pruning and attempting

not to use locks. There were frequently race conditions that had to be debugged. These were

usually related to working on two frames at a time.

In conclusion, we believe that it is better to avoid complexity in th- algorithm if we have a

choice. This would make using the Butterflv much easier. as long as we don't require efficiency

very close to 1. One approach would be to reevaluate the need for each part of the algorithn

depending on the condition. For example, it is worth working on two frames at once when the

number of word updates per processor per frame is small less than 10). In this case. the cost (if

having all but one processor wait for one to finish is substantial. (Note that for real time on the

Butterfly, each processor can only work on 3 words per frame.) For large tasks or small

Butterfly configurations, it is probably not orth the complexity. since the percentage of time

lost due to waiting is smaller.
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3. Demonstrations

During the third year of this contract, we gave several demonstrations of speech recognition
anid understanding using the Butterfly implementation of our continuous speech recognition
system. The first, on July 27th. demonstrated a serial connection between speech recognition
and natural language understanding within a simulated IDB/OSGP task. 1DB is an iteractive
database system for accessing the FCCBMP database. OSGP is an interactive display facility for
displaying charts, ships, sail-plans, etc. We implemented a simulation of a subset of these two
systems in order to demonstrate the feasibility of real-time interactive access to the database and
expert systems through the use of speech and natural language. The demonstration was
accomplished by connecting a VAX, two LISP machines, and the Butterfly (through a UNIX
VAX). The grammar used was a subset of the grammar for the whole task domain, designed to
cover all sentences related to the demonstration scenario. The perplexity of the grammar was -0,
measured on a test set of sentences. This indicates that the grammar represented a fairly difficult
recognition task. The system included an interactive graphics capability in which the user could
display charts of different oceans, control the display of different ships and their tracks, query
about the readiness of different vessels. etc. The speech recogition for each sentence required
about 10 seconds for each sentence. This was followed by about 20-30 seconds of time on a

Symbolics Lisp machine interpreting the meaning of the recognized words, followeu by a rapid
response on the graphics screen or answer from the database query that was generated. While
the machine interaction was complex, the demonstration gave a flavor for how a complete

spoken language system might appear.

The next demonstration using the Butterfly was the Live Test pertormed on September 29.
1987. In this case, each of three speakers, Allen Sears. Dave Pallett, a.id Tice DeYoung. spoke
30 sentences directly into the Butterfly recognizer. The grammar used in this case was the
Word-Pair Grammar described in the previous chapter. This grammar has a perplexity of about
60. The speakers were each given a list of sentences chosen by Dave Pallett. The speaker would
read each sentence, wait for the system to type out the recognized answer, and then after the

prompt, read the next sentence. Each sentence typically required about 20-30 seconds for
decoding (about 10 times real timei on a 32-processor Butterfly. Each speaker had an allotted
time of 30 minutes to process all 30 sentences. Even with initial time for setting up and
discussion beteen sentences, all speakers Nere able to finish within the 30 minute time limit.
The results of these live tests were presented at the DARPA meeting on October 13. 1987. The
word error rates tor the three speakers were 4%..-. 5"c. and 12%, respectively.

On October 13th. we demonstrated the Butterfly recognition system at the DARPA speech
meeting held at BBN. The sy,,tem had been enhanced with graphic., capabilities to illustrate the
recognition process as it was happening. First, the best partial answer was displayed as it %\a,,
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computed. At the end of each frame, the best theory was examined. A full traceback was

performed to determine the sequence of words in the best theory. Then, if this sequence was

different from the sequence that had been displayed before, the preceding sequence was erased

and the new sequence was displayed. Since the display process was quite fast, it appeared as if
words were being added one by one from left to right. If the answer changed. it would change

the string accordingly. Typically, a few words from the beginning of each utterance were
displayed before the utterance had been fully spoken, indicating that the recognition process was
taking place at the same time as the utterance was spoken.

The number of active word-arcs in each frame was displayed. For the word-pair grammar.
the maximum number of active word-arcs is the vocabulary size. Therefore the displayed

number varied from a minimum of one to a maximum of the vocabulary size. For other
grammars, the maximum number of word-arcs could be more or less than the vocabulary size.
The number of active word arcs fluctuates considerably due to two factors: the number of words

that can follow each word in the part of the sentence recognized so far. and the acoustic
uncertainty at each part of the utterance. This variation in the amount of work make., i"

necessary to have a dynamic allocation of tasks to the different processors in a parallel machine.

Finally, the work load balancing was illustrated by showing the number of phoneme,

updated by each processor. Each processor kept track of the number of phoneme models that
had to be updated. After every quarter second, the totals were displayed as a bar diagram. with
one bar for each processor. This showed that, on the average, all the processors were performing
about the same amount of work.
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4. Board-Level Recognizer

Since the aim of this project is real-time speech recognition, we have also been considering
the use of array processor boards as a small, portable alternative to the Butterfly for
demonstration purposes. For this task, we require a board that is not only powerful in terms of

computations, but has very large memory required by the recognition problem. We considered
two very different options. The first was to buy a commercially available array processor board.

The second was to build a special-purpose board tailored for speech recognition.

4.1 Commercially Available Boards

We considered several commercially available boards built by Sky, Mercury, and BBN
Delta Graphics, in addition to others. The conclusion for all of these boards was that they either

did not have sufficient on board memory, or were not fast enough for real-time operation. We
estimated that the speed would be comparable to that of a moderately sized Butterfly.

4.2 Special Purpose Recognition Boards

After discussions with Hy Murveit of SRI, we decided that it would be most interesting to
build a special purpose board, because the speeds that could be attained would be at least an
order of magnitude faster than could be attained on anv commercially available general purpose

board. In addition. Murveit believed that it would be possible to complete the design and
fabrication of a prototype in under one calendar year. The effort to build a prototype special-
purpose speech recognition system began around November of 1987. We ,were involved in three
different phases of this effort:3 1. Design of the high level hardware architecture to accomodate the algorithm

2. VLSI de-sign of some components

3 3. Front end signal process ing software on TMS320C25

Each of these is described helov,.

3 We agreed to cooperate fully with SRI and with Bob Brodersen at UC Berkeley to help in

the design and implementation of a special purpose recognition board capable of handling a class3 of discrete HMM recognition aliorithms. We attended meetings held at Berkeley and at SRI to
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explain the details of our HMM recognition algorithm, to discuss the computational tradeoffs of
different ways of structuring the algorithm, and to begin in the hardware architecture. Through
these discussions, we arrived at a design that was an order of magnitude faster than the initial
design.

A VLSI designer from BBN spent several months at UC Berkeley to assist in the design of

some of the components. This involved learning the design tools and the methods used there.

We specified the hardware and software requirements for the front end signal processing
board. These requirements were documented explicitly and distributed to SRI and to UC
Berkeley. The signal processing board was de,,igned to have two TMS320C25 integer array
processor chips, each with 64K bytes of static RAM. One of the processors has an A/D and filter
chip attached to it. The two processors are connected via a serial interface. Finally. each of the
memories is part of the address space of the 68020 host. We implemented the signal processing
algorithms that we currently use in integer arithmetic on the dual TMS320C25 system. All of
the software was tested by running actual speech data through it and companng the results to
floating point results obtained on the FPS array processor. We included the necessar-v scalin,,
operations in the program to ensure that the differences were minimal. At the present t.me the
software is complete and has been tested in the simulator, so our part of this work is complete.

III
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